Data Sheet

Customer:

Product: Ultra High Q / Low ESR Multilayer Ceramic Chip Capacitors

Size: 01005/0201/0402/0505/0603/0805/1111

Issued Date: 28-Jun.-2024

Edition: Ver. 3
Record of change

Date	Ver.		Page
29-Mar.-2023	2	Add Size/Dielectric/Capacitance/Rated Voltage	$1 \sim 9$
28-Jun.-2024	3	Add X8G Siza 0402\&Delete SIZE 0201 100V	$2,4,5$
		Add CAPACITANCE RANGE(Con.)(X8G) SIZE \&RARED VOLTAGE	9
		Add Dielectric Strength Test Condition (RF02:300\% of rated voltage.)	14
		Revise Paper Tape \& Add Constructions X8G	17,18

HITANO ENTERPRISE CORP.

7F-7, No. 3, Wu Chuan ${ }^{15 t}$ Road, New Taipei Industrial Park,
New Taipei City, TAI WAN, R.O.C.
Tel: +886 222991331 (Rep.)
Fax: +886 22298 2466, 22982969

Prepared by	Checked by	Approved by	Accepted by (customer)
28-Jun.-2024	28-Jun.-2024	28-Jun.-2024	
Randy Yu	Michelle Lin	Arthur Su	

HITANO

「ENTERPRISE CORP.@

1. INTRODUCTION

MLCC consists of a conducting material and electrodes. To manufacture a chip-type SMT and achieve miniaturization, high density and high efficiency, ceramic condensers are used.

Hitano RF series MLCC is used at high frequencies generally have a small temperature coefficient of capacitance, typical within the $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ required for NPO (COG) classification and have excellent conductivity internal electrode. Thus, our RF series MLCC will be with the feature of low ESR and high Q characteristics.

2. FEATURES

a. High Q and low ESR performance at high frequency.
b. Ultra low capacitance to 0.1 pF .
c. Can offer high precision tolerance to $\pm 0.05 \mathrm{pF}$.
d. Quality improvement of telephone calls for low power loss and better performance.

3. APPLICATIONS

a. Telecommunication products \& equipments :

Mobile phone, WLAN, Base station.
b. RF module : Power amplifier, VCO.
c. Tuners.

4. HOW TO ORDER

RF	0201	\underline{N}	101	J	251	C	T
Series	Size	Dielectric	Capacitance	Tolerance	Rated voltage	Termination	Packaging
RF= Low ESR	$\begin{aligned} & 01 R 5=01005(0402) \\ & 0201(0603) \\ & 0402(1005) \\ & 0505(1414) \\ & 0603(1608) \\ & 0805(2012) \\ & 1111(2828) \end{aligned}$	$\begin{gathered} \mathbf{N}=\mathrm{NPO} \\ (\mathrm{COG}) \\ \mathbf{G}=\mathrm{X} 8 \mathrm{G} \end{gathered}$	Two significant digits followed by no. of zeros. And R is in place of decimal point. eg.: $\begin{aligned} 0 R 5 & =0.5 \mathrm{pF} \\ 1 \mathrm{RO}= & =1.0 \mathrm{pF} \\ 100 & =10 \times 10^{0} \\ & =10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathbf{A}= \pm 0.05 \mathrm{pF} \\ & \mathbf{B}= \pm 0.1 \mathrm{pF} \\ & \mathbf{C}= \pm 0.25 \mathrm{pF} \\ & \mathbf{D}= \pm 0.5 \mathrm{pF} \\ & \mathbf{F}= \pm 1 \% \\ & \mathbf{G}= \pm 2 \% \\ & \mathbf{J}= \pm 5 \% \end{aligned}$	Two significant digits followed by no. of zeros. And R is in place of decimal point. 6R3=6.3 VDC 100=10 VDC 160=16 VDC 250=25 VDC 500=50 VDC 101=100 VDC 201 $=200$ VDC 251=250 VDC 501=500 VDC 152=1500 VDC	$\mathrm{C}=\mathrm{Cu} / \mathrm{Ni} / \mathrm{Sn}$	$\begin{aligned} & \mathbf{T}=7^{\prime \prime} \text { reeled } \\ & \mathbf{G}=13^{\prime \prime} \text { reeled } \end{aligned}$

5. EXTERNAL DIMENSIONS

Size Inch (mm)	L (mm)	W (mm)	T (mm)/Symbol		Remark	$\mathrm{M}_{\mathrm{B}}(\mathrm{mm})$	
01005 (0402)	0.40 ± 0.02	0.20 ± 0.02	0.20 ± 0.02	V	\#	0.10 ± 0.03	
0201 (0603)	0.60 ± 0.03	0.30 ± 0.03	0.30 ± 0.03	L	\#	0.15 ± 0.05	
0402 (1005)	1.00 ± 0.05	0.50 ± 0.05	0.50 ± 0.05	N	\#	0.25+0.05/-0.10	
0603 (1608)	1.60 ± 0.10	0.80 ± 0.10	0.80 ± 0.07	S		0.40 ± 0.15	
	$1.60+0.15 /-0.10$	$0.80+0.15 /-0.10$	0.50 ± 0.10	H			
0805 (2012)	2.00 ± 0.15	1.25 ± 0.10	0.60 ± 0.10	A		0.50 ± 0.20	
	2.00 ± 0.20	1.25 ± 0.20	0.85 ± 0.10	T			
0505 (1414)	$1.40+0.38 /-0.25$	1.40 ± 0.38	1.15 ± 0.15	J	\#	$0.25+0.25 /-0.13$	
1111 (2828)	$2.79+0.51 /-0.25$	2.79 ± 0.38	≤ 1.78	G	\#	0.38 ± 0.25	Fig. 5.1 The outline of MLCC

[^0]「ENTERPRISE CORP.©

6. GENERAL ELECTRICAL DATA

Dielectric	NPO	X8G
Size	$\begin{gathered} \hline 01005,0201,0402,0505,0603,0805, \\ 1111 \end{gathered}$	0402, 0603, 0805
Capacitance*	0.1 pF to 1000pF	0.2pF~82pF
Capacitance tolerance	$\begin{array}{r} \text { Cap } \leq 5 \mathrm{pF}: \mathrm{A}(\pm 0.05 \mathrm{pF} \\ 5 \mathrm{pF}<\mathrm{Cap}<10 \mathrm{pF}: \mathrm{B}(\pm 0.1 \\ \mathrm{Cap} \geq 10 \mathrm{pF}: \mathrm{F}(\pm 1 \end{array}$	$\begin{aligned} & C(\pm 0.25 \mathrm{pF}) \\ & o \mathrm{~F}), \mathrm{D}(\pm 0.5 \mathrm{pF}) \\ & \mathrm{J}(\pm 5 \%) \end{aligned}$
Rated voltage (WVDC)	$6.3 \mathrm{~V}, 10 \mathrm{~V}, 16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}$, $100 \mathrm{~V}, 200 \mathrm{~V}, 250 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$	200V, 250V, 500V
Q*	01005, 0201, 0402/25V~50V: Сар<3 0402/100V~200V, 0603, 0805, 05 Сар $\geq 30 \mathrm{p}$	20 C ; Cap $\geq 30 \mathrm{pF}: \mathrm{Q} \geq 1000$ $p<30 p F: Q \geq 800+20 C$;
Insulation resistance at Ur	$\geq 10 \mathrm{G} \Omega$ or $\mathrm{RxC} \geq 100 \Omega$	is smaller.
Operating temperature	-55 to $+125^{\circ} \mathrm{C}$	-55 to $+150^{\circ} \mathrm{C}$
Capacitance change	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
Termination	$\mathrm{Ni} / \mathrm{Sn}$ (lead-free termination)	

* Measured at the conditions of $25^{\circ} \mathrm{C}$ ambient temperature and $30 \sim 70 \%$ related humidity.

Apply $1.0 \pm 0.2 \mathrm{Vrms}, 1.0 \mathrm{MHz} \pm 10 \%$ for Cap. $\leq 1000 \mathrm{pF}$ and $1.0 \pm 0.2 \mathrm{Vrms}, 1.0 \mathrm{kHz} \pm 10 \%$ for Cap. $>1000 \mathrm{pF}$.

7. CAPACITANCE RANGE

DIELECTRIC		NPO		
SIZE		01005		Tolerance
RA	VOLTAGE (VDC)	16	25	
	0.2pF (0R2)	V	V	A, B
	0.3pF (0R3)	V	V	A, B
	0.4pF (0R4)	V	V	A, B
	0.5pF (0R5)	V	V	A, B, C
	0.6pF (0R6)	V	V	A, B, C
	0.7pF (0R7)	V	V	A, B, C
	0.75pF (R75)	V	V	A, B, C
	0.8pF (0R8)	V	V	A, B, C
	0.9pF (0R9)	V	V	A, B, C
	1.0pF (1R0)	V	V	A, B, C
	1.2pF (1R2)	V	V	A, B, C
	1.5pF (1R5)	V	V	A, B, C
	1.8pF (1R8)	V	V	A, B, C
	2.0pF (2R0)	V	V	A, B, C
	2.2pF (2R2)	V	V	A, B, C
	2.7pF (2R7)	V	V	A, B, C
	3.0pF (3R0)	V	V	A, B, C
	3.3pF (3R3)	V	V	A, B, C
	3.9pF (3R9)	V	V	A, B, C
	4.0pF (4R0)	V	V	A, B, C
	4.7pF (4R7)	V	V	A, B, C
	5.0pF (5R0)	V	V	A, B, C
	5.6pF (5R6)	V	V	B, C, D
	6.0pF (6R0)	V	V	B, C, D
	6.8pF (6R8)	V		B, C, D
	7.0pF (7R0)	V		B, C, D
	8.0pF (8R0)	V		B, C, D
	8.2pF (8R2)	V		B, C, D
	9.0pF (9R0)	V		B, C, D
	10pF (100)	V	V	C, D, G
	12pF (120)	V	V	J
	15pF (150)	V	V	J
	20pF (200)	V	V	J
	22pF (220)	V	V	J

1. The letter in cell is expressed the symbol of product thickness.

7. CAPACITANCE RANGE(Con.)

	ELECTRIC	NP0								
	SIZE	0201				0402				Tolerance
RATED VOLTAGE (VDC)		6.3	10	25	50	25	50	100	200	
	0.1pF (0R1)	L	L	L	L	N	N	N	N	A, B
	0.2pF (0R2)	L	L	L	L	N	N	N	N	A, B
	0.3pF (0R3)	L	L	L	L	N	N	N	N	A, B
	0.4pF (0R4)	L	L	L	L	N	N	N	N	A, B
	0.5pF (0R5)	L	L	L	L	N	N	N	N	A, B, C
	0.6pF (0R6)	L	L	L	L	N	N	N	N	A, B, C
	0.7pF (0R7)	L	L	L	L	N	N	N	N	A, B, C
	0.75pF (R75)	L	L	L	L	N	N	N	N	A, B, C
	0.8pF (0R8)	L	L	L	L	N	N	N	N	A, B, C
	0.9pF (0R9)	L	L	L	L	N	N	N	N	A, B, C
	1.0pF (1R0)	L	L	L	L	N	N	N	N	A, B, C
	1.1pF (1R1)	L	L	L	L	N	N	N	N	A, B, C
	1.2pF (1R2)	L	L	L	L	N	N	N	N	A, B, C
	1.3pF (1R3)	L	L	L	L	N	N	N	N	A, B, C
	1.4pF (1R4)	L	L	L	L	N	N	N	N	A, B, C
	1.5pF (1R5)	L	L	L	L	N	N	N	N	A, B, C
	1.6pF (1R6)	L	L	L	L	N	N	N	N	A, B, C
	1.7pF (1R7)	L	L	L	L	N	N	N	N	A, B, C
	1.8pF (1R8)	L	L	L	L	N	N	N	N	A, B, C
	1.9pF (1R9)	L	L	L	L	N	N	N	N	A, B, C
	2.0pF (2R0)	L	L	L	L	N	N	N	N	A, B, C
	2.1pF (2R1)	L	L	L	L	N	N	N	N	A, B, C
	2.2pF (2R2)	L	L	L	L	N	N	N	N	A, B, C
	2.3pF (2R3)	L	L	L	L	N	N	N	N	A, B, C
	2.4pF (2R4)	L	L	L	L	N	N	N	N	A, B, C
	2.5pF (2R5)	L	L	L	L	N	N	N	N	A, B, C
	2.6pF (2R6)	L	L	L	L	N	N	N	N	A, B, C
	2.7pF (2R7)	L	L	L	L	N	N	N	N	A, B, C
	2.8pF (2R8)	L	L	L	L	N	N	N	N	A, B, C
	2.9pF (2R9)	L	L	L	L	N	N	N	N	A, B, C
	3.0pF (3R0)	L	L	L	L	N	N	N	N	A, B, C
	3.1 pF (3R1)	L	L	L	L	N	N	N	N	A, B, C
	3.2pF (3R2)	L	L	L	L	N	N	N	N	A, B, C
	3.3pF (3R3)	L	L	L	L	N	N	N	N	A, B, C
	3.4pF (3R4)	L	L	L	L	N	N	N	N	A, B, C
	3.5pF (3R5)	L	L	L	L	N	N	N	N	A, B, C
	3.6pF (3R6)	L	L	L	L	N	N	N	N	A, B, C
	3.7pF (3R7)	L	L	L	L	N	N	N	N	A, B, C
	3.8pF (3R8)	L	L	L	L	N	N	N	N	A, B, C
	3.9pF (3R9)	L	L	L	L	N	N	N	N	A, B, C
	4.0pF (4R0)	L	L	L	L	N	N	N	N	A, B, C
	4.1pF (4R1)	L	L	L	L	N	N	N	N	A, B, C
	4.2pF (4R2)	L	L	L	L	N	N	N	N	A, B, C
	4.3pF (4R3)	L	L	L	L	N	N	N	N	A, B, C
	4.4pF (4R4)	L	L	L	L	N	N	N	N	A, B, C
	4.5pF (4R5)	L	L	L	L	N	N	N	N	A, B, C
	4.6pF (4R6)	L	L	L	L	N	N	N	N	A, B, C
	4.7pF (4R7)	L	L	L	L	N	N	N	N	A, B, C
	4.8pF (4R8)	L	L	L	L	N	N	N	N	A, B, C
	4.9pF (4R9)	L	L	L	L	N	N	N	N	A, B, C
	5.0pF (5R0)	L	L	L	L	N	N	N	N	A, B, C
	5.1pF (5R1)	L	L	L	L	N	N	N	N	B, C, D
	5.2pF (5R2)	L	L	L	L	N	N	N	N	B, C, D
	5.3pF (5R3)	L	L	L	L	N	N	N	N	B, C, D
	5.4pF (5R4)	L	L	L	L	N	N	N	N	B, C, D
	5.5pF (5R5)	L	L	L	L	N	N	N	N	B, C, D
	5.6pF (5R6)	L	L	L	L	N	N	N	N	B, C, D
	5.7pF (5R7)	L	L	L	L	N	N	N	N	B, C, D
	5.8pF (5R8)	L	L	L	L	N	N	N	N	B, C, D
	5.9pF (5R9)	L	L	L	L	N	N	N	N	B, C, D
	6.0pF (6R0)	L	L	L	L	N	N	N	N	B, C, D

[^1]
7. CAPACITANCE RANGE(Con.)

	ELECTRIC	NP0								
	SIZE	0201				0402				Tolerance
RATED VOLTAGE (VDC)		6.3	10	25	50	25	50	100	200	
	6.1pF (6R1)	L	L	L	L	N	N	N	N	B, C, D
	6.2pF (6R2)	L	L	L	L	N	N	N	N	B, C, D
	6.3pF (6R3)	L	L	L	L	N	N	N	N	B, C, D
	6.4 pF (6R4)	L	L	L	L	N	N	N	N	B, C, D
	6.5pF (6R5)	L	L	L	L	N	N	N	N	B, C, D
	6.6pF (6R6)	L	L	L	L	N	N	N	N	B, C, D
	6.7pF (6R7)	L	L	L	L	N	N	N	N	B, C, D
	6.8pF (6R8)	L	L	L	L	N	N	N	N	B, C, D
	6.9pF (6R9)	L	L	L	L	N	N	N	N	B, C, D
	7.0pF (7R0)	L	L	L	L	N	N	N	N	B, C, D
	7.1pF (7R1)	L	L	L	L	N	N	N	N	B, C, D
	7.2pF (7R2)	L	L	L	L	N	N	N	N	B, C, D
	7.3pF (7R3)	L	L	L	L	N	N	N	N	B, C, D
	7.4pF (7R4)	L	L	L	L	N	N	N	N	B, C, D
	7.5pF (7R5)	L	L	L	L	N	N	N	N	B, C, D
	7.6pF (7R6)	L	L	L	L	N	N	N	N	B, C, D
	7.7pF (7R7)	L	L	L	L	N	N	N	N	B, C, D
	7.8pF (7R8)	L	L	L	L	N	N	N	N	B, C, D
	7.9pF (7R9)	L	L	L	L	N	N	N	N	B, C, D
	8.0pF (8R0)	L	L	L	L	N	N	N	N	B, C, D
	8.1pF (8R1)	L	L	L	L	N	N	N	N	B, C, D
	8.2pF (8R2)	L	L	L	L	N	N	N	N	B, C, D
	8.3pF (8R3)	L	L	L	L	N	N	N	N	B, C, D
	8.4pF (8R4)	L	L	L	L	N	N	N	N	B, C, D
	8.5pF (8R5)	L	L	L	L	N	N	N	N	B, C, D
	8.6pF (8R6)	L	L	L	L	N	N	N	N	B, C, D
	8.7pF (8R7)	L	L	L	L	N	N	N	N	B, C, D
	8.8pF (8R8)	L	L	L	L	N	N	N	N	B, C, D
	8.9pF (8R9)	L	L	L	L	N	N	N	N	B, C, D
	9.0pF (9R0)	L	L	L	L	N	N	N	N	B, C, D
	9.1pF (9R1)	L	L	L	L	N	N	N	N	B, C, D
	9.2pF (9R2)	L	L	L	L	N	N	N	N	B, C, D
	9.3pF (9R3)	L	L	L	L	N	N	N	N	B, C, D
	9.4pF (9R4)	L	L	L	L	N	N	N	N	B, C, D
	9.5pF (9R5)	L	L	L	L	N	N	N	N	B, C, D
	9.6pF (9R6)	L	L	L	L	N	N	N	N	B, C, D
	9.7pF (9R7)	L	L	L	L	N	N	N	N	B, C, D
	9.8pF (9R8)	L	L	L	L	N	N	N	N	B, C, D
	9.9pF (9R9)	L	L	L	L	N	N	N	N	B, C, D
	10pF (100)	L	L	L	L	N	N	N	N	F, G, J
	11pF (110)	L	L	L	L	N	N	N	N	F, G, J
	12pF (120)	L	L	L	L	N	N	N	N	F, G, J
	13pF (130)	L	L	L	L	N	N	N	N	F, G, J
	15pF (150)	L	L	L	L	N	N	N	N	F, G, J
	16pF (160)	L	L	L	L	N	N	N	N	F, G, J
	18pF (180)	L	L	L	L	N	N	N	N	F, G, J
	20pF (200)	L	L	L	L	N	N	N	N	F, G, J
	22pF (220)	L	L	L		N	N	N	N	F, G, J
	24pF (240)	L	L	L		N	N	N	N	F, G, J
	27pF (270)	L	L	L		N	N	N	N	F, G, J
	30pF (300)	L	L	L		N	N	N	N	F, G, J
	33pF (330)	L	L	L		N	N	N	N	F, G, J
	36pF (360)					N	N	N		F, G, J
	39pF (390)					N	N	N		F, G, J
	43pF (430)					N	N	N		F, G, J
	47pF (470)					N	N	N		F, G, J
	56pF (560)					N	N	N		F, G, J
	68pF (680)					N	N			F, G, J
	82pF (820)					N	N			F, G, J
	100pF (101)					N	N			F, G, J

1. The letter in cell is expressed the symbol of product thickness.

7. CAPACITANCE RANGE(Con.)

	LECTRIC	NPO										
	SIZE	0505			0603			0805				Tolerance
RATED VOLTAGE (VDC)		50	100	250	50	100	250	50	100	250	500	
	0.1pF (0R1)				H	H	H					A, B
	0.2pF (0R2)				H	H	H	A	A	A	A	A, B
	0.3pF (0R3)				S	S	S	T	T	T	T	A, B
	0.4pF (0R4)	J	J	J	S	S	S	T	T	T	T	A, B
	0.5pF (0R5)	J	J	J	S	S	S	T	T	T	T	A, B, C
	0.6pF (0R6)	J	J	J	S	S	S	T	T	T	T	A, B, C
	0.7pF (0R7)	J	J	J	S	S	S	T	T	T	T	A, B, C
	0.8pF (0R8)	J	J	\checkmark	S	S	S	T	T	T	T	A, B, C
	0.9pF (0R9)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.0pF (1R0)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.1pF (1R1)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.2pF (1R2)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.3pF (1R3)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.4pF (1R4)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.5pF (1R5)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.6pF (1R6)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.7pF (1R7)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.8pF (1R8)	J	J	J	S	S	S	T	T	T	T	A, B, C
	1.9pF (1R9)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.0pF (2R0)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.1pF (2R1)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.2pF (2R2)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.3pF (2R3)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.4pF (2R4)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.5pF (2R5)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.6pF (2R6)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.7pF (2R7)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.8pF (2R8)	J	J	J	S	S	S	T	T	T	T	A, B, C
	2.9pF (2R9)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.0pF (3R0)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.1pF (3R1)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.2pF (3R2)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.3pF (3R3)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.4pF (3R4)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.5pF (3R5)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.6pF (3R6)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.7pF (3R7)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.8pF (3R8)	J	J	J	S	S	S	T	T	T	T	A, B, C
	3.9pF (3R9)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.0pF (4R0)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.1pF (4R1)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.2pF (4R2)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.3pF (4R3)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.4pF (4R4)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.5pF (4R5)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.6pF (4R6)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.7pF (4R7)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.8pF (4R8)	J	J	J	S	S	S	T	T	T	T	A, B, C
	4.9pF (4R9)	J	J	J	S	S	S	T	T	T	T	A, B, C
	5.0 pF (5R0)	J	J	J	S	S	S	T	T	T	T	A, B, C
	5.1 pF (5R1)	J	J	J	S	S	S	T	T	T	T	B, C, D
	5.2pF (5R2)	J	J	J	S	S	S	T	T	T	T	B, C, D
	5.3pF (5R3)	J	J	J	S	S	S	T	T	T	T	B, C, D
	5.4pF (5R4)	J	J	J	S	S	S	T	T	T	T	B, C, D
	5.5pF (5R5)	J	J	J	S	S	S	T	T	T	T	B, C, D
	5.6pF (5R6)	J	J	J	S	S	S	T	T	T	T	B, C, D
	5.7pF (5R7)	J	J	J	S	S	S	T	T	T	T	B, C, D
	5.8pF (5R8)	J	J	J	S	S	S	T	T	T	T	B, C, D
	5.9pF (5R9)	J	J	J	S	S	S	T	T	T	T	B, C, D
	6.0pF (6R0)	J	J	J	S	S	S	T	T	T	T	B, C, D

1. The letter in cell is expressed the symbol of product thickness.

7. CAPACITANCE RANGE(Con.)

	LECTRIC	NPO											
	SIZE	0505			0603				0805				Tolerance
RATED VOLTAGE (VDC)		50	100	250	25	50	100	250	50	100	250	500	
	6.1pF (6R1)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	6.2pF (6R2)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	6.3pF (6R3)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	6.4pF (6R4)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	6.5pF (6R5)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	6.6 pF (6R6)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	6.7pF (6R7)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	6.8 pF (6R8)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	6.9 pF (6R9)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.0pF (7R0)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.1pF (7R1)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.2pF (7R2)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.3pF (7R3)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.4pF (7R4)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.5pF (7R5)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.6pF (7R6)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.7pF (7R7)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.8pF (7R8)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	7.9pF (7R9)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.0pF (8R0)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.1pF (8R1)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.2pF (8R2)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.3pF (8R3)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.4 pF (8R4)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.5pF (8R5)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.6pF (8R6)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.7 pF (8R7)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.8pF (8R8)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	8.9 pF (8R9)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.0pF (9R0)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.1pF (9R1)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.2pF (9R2)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.3pF (9R3)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.4pF (9R4)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.5pF (9R5)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.6pF (9R6)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.7pF (9R7)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.8pF (9R8)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	9.9pF (9R9)	J	J	J	S	S	S	S	T	T	T	T	B, C, D
	10pF (100)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	11pF (110)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	12pF (120)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	13pF (130)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	15pF (150)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	16pF (160)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	18pF (180)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	20pF (200)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	22pF (220)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	24pF (240)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	27pF (270)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	30pF (300)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	33pF (330)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	36pF (360)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	39pF (390)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	43pF (430)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	47pF (470)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	56pF (560)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	68pF (680)	J	J	J	S	S	S	S	T	T	T	T	F, G, J
	82pF (820)	J	J	J	S	S	S	S	T	T	T		F, G, J
	100pF (101)	J	J	J	S	S	S	S	T	T	T		F, G, J
	120pF (121)				S	S			T	T	T		F, G, J
	150pF (151)				S	S			T	T	T		F, G, J
	180pF (181)				S	S			T	T	T		F, G, J
	220pF (221)				S	S			T	T	T		F, G, J

[^2]
7. CAPACITANCE RANGE(Con.)

	ELECTRIC	NPO						
	SIZE	1111						Tolerance
RATED VOLTAGE (VDC)		50	100	200	250	500	1500	
	1.0pF (1R0)	G	G	G	G	G	G	A, B, C
	1.1pF (1R1)	G	G	G	G	G	G	A, B, C
	1.2pF (1R2)	G	G	G	G	G	G	A, B, C
	1.3pF (1R3)	G	G	G	G	G	G	A, B, C
	1.5pF (1R5)	G	G	G	G	G	G	A, B, C
	1.6pF (1R6)	G	G	G	G	G	G	A, B, C
	1.8pF (1R8)	G	G	G	G	G	G	A, B, C
	2.0pF (2R0)	G	G	G	G	G	G	A, B, C
	2.2pF (2R2)	G	G	G	G	G	G	A, B, C
	2.4pF (2R4)	G	G	G	G	G	G	A, B, C
	2.7pF (2R7)	G	G	G	G	G	G	A, B, C
	3.0pF (3R0)	G	G	G	G	G	G	A, B, C
	3.3pF (3R3)	G	G	G	G	G	G	A, B, C
	3.6pF (3R6)	G	G	G	G	G	G	A, B, C
	3.9pF (3R9)	G	G	G	G	G	G	A, B, C
	4.0pF (4R0)	G	G	G	G	G	G	A, B, C
	4.3pF (4R3)	G	G	G	G	G	G	A, B, C
	5.0pF (5R0)	G	G	G	G	G	G	A, B, C
	5.1pF (5R1)	G	G	G	G	G	G	B, C, D
	5.6pF (5R6)	G	G	G	G	G	G	B, C, D
	6.0pF (6R0)	G	G	G	G	G	G	B, C, D
	6.8pF (6R8)	G	G	G	G	G	G	B, C, D
	7.0pF (7R0)	G	G	G	G	G	G	B, C, D
	8.0pF (8R0)	G	G	G	G	G	G	B, C, D
	8.2pF (8R2)	G	G	G	G	G	G	B, C, D
	10pF (100)	G	G	G	G	G	G	F, G, J
	12pF (120)	G	G	G	G	G	G	F, G, J
	15pF (150)	G	G	G	G	G	G	F, G, J
	18pF (180)	G	G	G	G	G	G	F, G, J
	22pF (220)	G	G	G	G	G	G	F, G, J
	27pF (270)	G	G	G	G	G	G	F, G, J
	33pF (330)	G	G	G	G	G	G	F, G, J
	39pF (390)	G	G	G	G	G		F, G, J
	47pF (470)	G	G	G	G	G		F, G, J
	56pF (560)	G	G	G	G	G		F, G, J
	68pF (680)	G	G	G	G	G		F, G, J
	82pF (820)	G	G	G	G	G		F, G, J
	100pF (101)	G	G	G	G	G		F, G, J
	120pF (121)	G	G	G	G	G		F, G, J
	150pF (151)	G	G	G	G	G		F, G, J
	180pF (181)	G	G	G	G	G		F, G, J
	220pF (221)	G	G	G	G	G		F, G, J
	270pF (271)	G	G	G	G	G		F, G, J
	330 pF (331)	G	G	G	G	G		F, G, J
	390pF (391)	G	G	G	G	G		F, G, J
	470pF (471)	G	G	G	G	G		F, G, J
	560pF (561)	G	G	G	G	G		F, G, J
	680pF (681)	G	G	G	G	G		F, G, J
	820pF (821)	G	G	G	G	G		F, G, J
	1000pF (102)	G	G	G	G	G		F, G, J

1. The letter in cell is expressed the symbol of product thickness.

7. CAPACITANCE RANGE(Con.)(X8G)

DIELECTRIC		X8G				
		0402	0603	0805		Tolerance
	RATED LTAGE (VDC)	200	250	250	500	
	6.1pF (6R1)	N	S	T	T	B, C, D
	6.2pF (6R2)	N	S	T	T	B, C, D
	6.3pF (6R3)	N	S	T	T	B, C, D
	6.4pF (6R4)	N	S	T	T	B, C, D
	6.5pF (6R5)	N	S	T	T	B, C, D
	6.6pF (6R6)	N	S	T	T	B, C, D
	6.7pF (6R7)	N	S	T	T	B, C, D
	6.8pF (6R8)	N	S	T	T	B, C, D
	6.9pF (6R9)	N	S	T	T	B, C, D
	7.0pF (7R0)	N	S	T	T	B, C, D
	7.1pF (7R1)	N	S	T	T	B, C, D
	7.2pF (7R2)	N	S	T	T	B, C, D
	7.3pF (7R3)	N	S	T	T	B, C, D
	7.4pF (7R4)	N	S	T	T	B, C, D
	7.5pF (7R5)	N	S	T	T	B, C, D
	7.6pF (7R6)	N	S	T	T	B, C, D
	7.7pF (7R7)	N	S	T	T	B, C, D
	7.8pF (7R8)	N	S	T	T	B, C, D
	7.9pF (7R9)	N	S	T	T	B, C, D
	8.0pF (8R0)	N	S	T	T	B, C, D
	8.1pF (8R1)	N	S	T	T	B, C, D
	8.2pF (8R2)	N	S	T	T	B, C, D
	8.3pF (8R3)	N	S	T	T	B, C, D
	8.4pF (8R4)	N	S	T	T	B, C, D
	8.5pF (8R5)	N	S	T	T	B, C, D
	8.6pF (8R6)	N	S	T	T	B, C, D
	8.7pF (8R7)	N	S	T	T	B, C, D
	8.8pF (8R8)	N	S	T	T	B, C, D
	8.9pF (8R9)	N	S	T	T	B, C, D
	9.0pF (9R0)	N	S	T	T	B, C, D
	9.1pF (9R1)	N	S	T	T	B, C, D
	9.2pF (9R2)	N	S	T	T	B, C, D
	9.3pF (9R3)	N	S	T	T	B, C, D
	9.4pF (9R4)	N	S	T	T	B, C, D
	9.5pF (9R5)	N	S	T	T	B, C, D
	9.6pF (9R6)	N	S	T	T	B, C, D
	9.7pF (9R7)	N	S	T	T	B, C, D
	9.8pF (9R8)	N	S	T	T	B, C, D
	9.9pF (9R9)	N	S	T	T	B, C, D
	10pF (100)	N	S	T	T	F, G, J
	11pF (110)	N	S	T	T	F, G, J
	12pF (120)	N	S	T	T	F, G, J
	13pF (130)	N	S	T	T	F, G, J
	15pF (150)	N	S	T	T	F, G, J
	16pF (160)	N	S	T	T	F, G, J
	18pF (180)	N	S	T	T	F, G, J
	20pF (200)	N	S	T	T	F, G, J
	22pF (220)	N	S	T	T	F, G, J
	24pF (240)	N	S	T		F, G, J
	27pF (270)	N	S	T		F, G, J
	30pF (300)	N	S	T		F, G, J
	33pF (330)	N	S	T		F, G, J
	36pF (360)		S	T		F, G, J
	39pF (390)		S	T		F, G, J
	43pF (430)		S	T		F, G, J
	47pF (470)			T		F, G, J
	56pF (560)			T		F, G, J
	68pF (680)			T		F, G, J
	82pF (820)			T		F, G, J

[^3]「ENTERPRISE CORP.©

8. ELECTRICAL CHARACTERISTICS

HITANO

「ENTERPRISE CORP.©

8. ELECTRICAL CHARACTERISTICS

Fig. 3 ESR vs. Frequency (0402 size)

Fig. 4 Q vs. Frequency (0201 size)

Fig. 5Q vs. Frequency (0402 size)

8. ELECTRICAL CHARACTERISTICS

Fig. 8 ESR vs. Frequency (0603 size)

Fig. 9 ESR vs. Frequency (0805 size)

Fig. 12 Impedance vs. Frequency. (0603 size)

Fig. 13 Impedance vs. Frequency (0805 size)

8. ELECTRICAL CHARACTERISTICS

Fig. 14 ESR vs. Frequency (0505 size)

Fig. 15 ESR vs. Frequency (1111 size)

Fig. 17 Q vs. Frequency (1111 size)

9. RELIABILITY TEST CONDITIONS AND REQUIREMENTS

No	Item	Test Condition	Requirements
1.	Visual and Dimensions	---	* No remarkable defect. * Dimensions to confirm to individual specification sheet.
2.	Capacitance	* Class I : (NPO) Cap. $\leq 1000 \mathrm{pF}, 1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{MHz} \pm 10 \%$. Cap. $>1000 \mathrm{pF}, 1.0 \pm 0.2 \mathrm{Vrms}, 1 \mathrm{KHz} \pm 10 \%$. At $25^{\circ} \mathrm{C}$ ambient temperature.	* Shall not exceed the limits given in the detailed spec.
3.	Q/D.F. (Dissipation Factor)		* $01005,0201,0402 / 25 \mathrm{~V} \sim 50 \mathrm{~V}:$ Cap. $<30 \mathrm{pF}, \mathrm{Q} \geq 400+20 \mathrm{C} ;$ Cap. $\geq 30 \mathrm{pF}, \mathrm{Q} \geq 1000$ * $0402 / 100 \mathrm{~V} \sim 200 \mathrm{~V}, 0603,0805,0505,1111:$ Cap. $<30 \mathrm{pF}: \mathrm{Q} \geq 800+20 \mathrm{C} ;$ Cap. $\geq 30 \mathrm{pF}: \mathrm{Q} \geq 1400$
4.	Temperature Coefficient	* With no electrical load.	* Capacitance change: within ± 30 ppm $/{ }^{\circ} \mathrm{C}$;
5.	Insulation Resistance	* $\leq 100 \mathrm{~V}$: To apply rated voltage for max. 120 sec . * $\geq 200 \mathrm{~V}$:To apply rated voltage (500V max.) for 60 sec .	* $\geq 10 \mathrm{G} \Omega$ or $\mathrm{RxC} 2100 \Omega-\mathrm{F}$, whichever is smaller.
6.	Dielectric Strength	* To apply voltage : $\leq 100 \mathrm{~V}$: 250% of rated voltage. (RF02:300\% of rated voltage.) 200V ~ 300V : 200\% of rated voltage. $500 \mathrm{~V} \sim 999 \mathrm{~V}: 150 \%$ of rated voltage. $1000 \mathrm{~V} \sim 3000 \mathrm{~V}: 120 \%$ of rated voltage. 4000V : 110% of rated voltage. * Duration : 1 to 5 sec . * Charge \& discharge current less than 50 mA .	* No evidence of damage or flash over during test.
7.	Solderability	* Solder temperature : $235 \pm 5^{\circ} \mathrm{C}$. * Dipping time : $2 \pm 0.5 \mathrm{sec}$.	* 95\% min. coverage of all metalized area.
8.	Resistance to Soldering Heat	* Solder temperature : $260 \pm 5^{\circ} \mathrm{C}$. * Dipping time : $10 \pm 1 \mathrm{sec}$. * Preheating : 120 to $150^{\circ} \mathrm{C}$ for 1 minute before immerse the capacitor in a eutectic solder. * Cap. / DF(Q) / I.R. Measurement to be made after deaging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp.	* No remarkable damage. * Cap. change : Within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$ whichever is larger. * Q/D.F., I.R. and dielectric strength : To meet initial requirements. * 25% max. leaching on each edge.
9.	Temperature Cycle	* Conduct the five cycles according to the temperatures and time. * Cap. / DF(Q) / I.R. Measurement to be made after deaging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp.	* No remarkable damage. * Cap. change : Within $\pm 2.5 \%$ or $\pm 0.25 \mathrm{pF}$, whichever is larger. * Q/D.F., I.R. and dielectric strength : To meet initial requirements.
10.	Humidity (Damp Heat) Steady State	* Test temp. : $40 \pm 2^{\circ} \mathrm{C}$. * Humidity : 90~95\% RH. * Test time : 500 +24/-0hrs. * Cap./DF(Q) Measurement to be made after de-aging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp.	* No remarkable damage. * Cap. change : Within $\pm 5.0 \%$ or $\pm 0.5 \mathrm{pF}$, whichever is larger. * Q/D.F. value : Cap.>30pF, $\mathrm{Q} \geq 350$. $10 \mathrm{pF} \leq$ Cap. $\leq 30 \mathrm{pF}, \mathrm{Q} \geq 275+2.5 \mathrm{C}$. Cap. $<10 \mathrm{pF}, \mathrm{Q} \geq 200+10 \mathrm{C}$. *I.R. : $\geq 1 \mathrm{G} \Omega$.

9. RELIABILITY TEST CONDITIONS AND REQUIREMENTS

No.	Item	Test Condition	Requirements	
11.	Humidity (Damp Heat) Load	* Test temp. : $40 \pm 2^{\circ} \mathrm{C}$. * Humidity : 90~95\%RH. * Test time : 500 +24/-0hrs. * To apply voltage : Rated voltage (500 Vdc max.). * Cap./DF(Q) Measurement to be made after deaging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp.	* No remarkable damage. * Cap. change : Within $\pm 7.5 \%$ or $\pm 0.75 \mathrm{pF}$, whichever is larger. * Q/D.F. value : Cap. $\geq 30 \mathrm{pF}, \mathrm{Q} \geq 200$; Cap. $<30 \mathrm{pF}, \mathrm{Q} \geq 100+10 / 3 C$. * I.R. : $\geq 500 \mathrm{M} \Omega$.	
12.	High Temperature Load (Endurance)	* Test temp. : NP0: $125 \pm 3^{\circ} \mathrm{C}$ $\text { X8G: } 150 \pm 3^{\circ} \mathrm{C} .$ * To apply voltage : (1) $10 \mathrm{~V} \leq \mathrm{Ur}<500 \mathrm{~V}$: 200% of rated voltage. (2) $\leq 6.3 \mathrm{~V}$ or $500 \mathrm{~V}: 150 \%$ of rated voltage. (3) Ur $\geq 630 \mathrm{~V}: 120 \%$ of rated voltage. * Test time : $1000+24 /-0 \mathrm{hrs}$. * Cap. / DF(Q) / I.R. Measurement to be made after de-aging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp.	* No remarkable damage. * Cap. change : Within $\pm 3.0 \%$ or $\pm 0.3 \mathrm{pF}$, whichever is larger. * Q/D.F. value : $\begin{aligned} & \text { Cap. }>30 \mathrm{pF}, \mathrm{Q} \geq 350 \text {. } \\ & 10 \mathrm{pF} \leq \text { Cap. } \leq 30 \mathrm{pF}, \mathrm{Q} \geq 275+2.5 \mathrm{C} \text {. } \\ & \text { Cap. }<10 \mathrm{pF}, \mathrm{Q} \geq 200+10 \mathrm{C} \text {. } \\ & \text { * I.R. }: \geq 1 \mathrm{G} \Omega . \end{aligned}$	
13.	Adhesive Strength of Termination	$\begin{array}{\|l} \hline \text { * } \text { Pressurizing force : } \\ 01005: 1 \mathrm{~N} / 0201: 2 \mathrm{~N} . \\ 0402 \text { to } 0603: 5 \mathrm{~N} />0603: 10 \mathrm{~N} . \\ * \text { Test time }: 10 \pm 1 \mathrm{sec} . \\ \hline \end{array}$	* No remarkable damage or removal of the terminations.	
14.	Bending Test	* The middle part of substrate shall be pressurized by means of the pressurizing rod at a rate of about 1 mm per second until the deflection becomes 1 mm and then the pressure shall be maintained for $5 \pm 1 \mathrm{sec}$. * Measurement to be made after keeping at room temp. for 24 ± 2 hrs.	* No remarkable damage. * Cap change: within $\pm 5.0 \%$ or ± 0.5 (This capacitance change means th flexure of substrate from the capac	whichever is larger. change of capacitance under specified nce measured before the test)
15.	Vibration Resistance	* Vibration frequency: $10 \sim 55 \mathrm{~Hz} / \mathrm{min}$. * Total amplitude : 1.5 mm . * Test time : 6 hrs. (Two hrs each in three mutually perpendicular directions) * Cap./DF(Q) Measurement to be made after deaging at $150^{\circ} \mathrm{C}$ for 1 hr then set for $24 \pm 2 \mathrm{hrs}$ at room temp.	* No remarkable damage. * Cap. change and D.F. : To meet i	spec.
16.	ESR	* The ESR should be measured at room temperature and tested at frequency $1 \pm 0.1 \mathrm{GHz}$.	01005	0505
			0.2pF 5 Cap. $\leq 1 \mathrm{pF}: ~<700 \mathrm{~m} / 2 / \mathrm{pF}$	0.4 pF SCap. $<1.0 \mathrm{pF}$: $<1500 \mathrm{~m} \Omega$
			$1 \mathrm{pF}<$ Cap. $\leq 2 \mathrm{pF}: ~<600 \mathrm{~m} \Omega$	1.0pF \leq Cap. $<10 \mathrm{pF}: ~<250 \mathrm{~m} \Omega$
			$2 \mathrm{pF}<$ Cap. $\leq 5 \mathrm{pF}: ~<500 \mathrm{~m} \Omega$	10pF \leq Cap. $\leq 100 \mathrm{pF}$: $<200 \mathrm{~m} \Omega$
			$5 \mathrm{pF}<\mathrm{Cap} . \leq 10 \mathrm{pF}:<300 \mathrm{~m} \Omega$	
			$10 \mathrm{pF}<$ Cap. $\leq 22 \mathrm{pF}:<350 \mathrm{~m} \Omega$	
			0201	0402
			$0.1 \mathrm{pF} \leq$ Cap. $\leq 1 \mathrm{pF}: ~<350 \mathrm{~m} \Omega / \mathrm{pF}$	$0.1 \mathrm{pF} \leq \mathrm{Cap} . \leq 1 \mathrm{pF}:<350 \mathrm{~m} \Omega / \mathrm{pF}$
			$1 \mathrm{pF}<$ Cap. $\leq 5 \mathrm{pF}: ~<300 \mathrm{~m} \Omega$	$1 \mathrm{pF}<$ Cap. $\leq 5 \mathrm{pF}: ~<300 \mathrm{~m} \Omega$
			$5 \mathrm{pF}<$ Cap. $\leq 22 \mathrm{pF}: ~<250 \mathrm{~m} \Omega$	$5 \mathrm{pF}<$ Cap. $\leq 100 \mathrm{pF}:<250 \mathrm{~m} \Omega$
			0603	0805
			$0.3 \mathrm{pF} \leq$ Cap. $\leq 1 \mathrm{pF}: ~<1500 \mathrm{~m} \Omega$	$0.3 \mathrm{pF} \leq$ Cap. $\leq 1 \mathrm{pF}: ~<1500 \mathrm{~m} \Omega$
			$1 \mathrm{pF}<\mathrm{Cap} . \leq 10 \mathrm{pF}:<250 \mathrm{~m} \Omega$	$1 \mathrm{pF}<$ Cap. $\leq 10 \mathrm{pF}: ~<250 \mathrm{~m} \Omega$
			10pF<Cap. $5220 \mathrm{pF}:$ <200m Ω	Cap. $>10 \mathrm{pF}$: $<200 \mathrm{~m} \Omega$
		* The ESR should be measured at room temperature and tested at frequency $500 \pm 50 \mathrm{MHz}$.	$\begin{aligned} & 0201,22 \mathrm{pF} \leq \mathrm{Cap} \leq 33 \mathrm{pF}:<300 \mathrm{~m} \Omega \\ & 1111,100 \mathrm{pF}<\text { Cap } \leq 1000 \mathrm{pF}:<150 \mathrm{~m} \Omega \end{aligned}$	

HITANO

「ENTERPRISE CORP.©

10. PACKAGE DIMENSION AND QUANTITY

Paper Tape :

Size	Thickness (mm)/Symbol		Paper tape	
			7" reel	13" reel
$01005(0402)$	0.20 ± 0.02	V	20,000	-
$0201(0603)$	0.30 ± 0.03	L	15,000	70,000
$0402(1005)$	0.50 ± 0.05	N	10,000	50,000
$0603(1608)$	0.80 ± 0.07	S	4,000	15,000
	0.50 ± 0.10	H	4,000	-
$0805(2012)$	0.60 ± 0.10	A	4,000	15,000
	0.85 ± 0.10	T	4,000	15,000

Plastic Tape :

Size	Thickness (mm)/Symbol		Plastic tape	
			7" reel	13" reel
$0505(1414)$	1.15 ± 0.15	J	3,000	-
$1111(2828)$	≤ 1.78	G	2,000	-

Tape \& reel dimensions :

Fig. 21 The dimension of paper tape

Size	$\mathbf{0 1 0 0 5}$	$\mathbf{0 2 0 1}$	$\mathbf{0 4 0 2}$	$\mathbf{0 5 0 5}$	$\mathbf{0 6 0 3}$	$\mathbf{0 8 0 5}$	$\mathbf{1 1 1 1}$
Thickness	\mathbf{V}	\mathbf{L}	\mathbf{N}	\mathbf{J}	\mathbf{S}	\mathbf{T}	
$\mathbf{A}_{\mathbf{0}}$	0.25 ± 0.05	0.40 ± 0.10	0.70 ± 0.20	<1.90	1.05 ± 0.30	1.50 ± 0.20	$<\mathbf{G}$
\mathbf{B}_{0}	0.45 ± 0.05	0.70 ± 0.10	1.20 ± 0.20	<1.90	1.80 ± 0.30	2.30 ± 0.20	<3.80
\mathbf{T}	≤ 0.50	≤ 0.55	≤ 0.80	0.23 ± 0.10	≤ 1.20	≤ 1.20	0.23 ± 0.10
$\mathbf{K}_{\mathbf{0}}$	-	-	-	<1.50	-	<2.50	
\mathbf{W}	8.00 ± 0.30						
$\mathbf{P}_{\mathbf{0}}$	4.00 ± 0.10						
$\mathbf{1 0 x P _ { 0 }}$	40.00 ± 0.10	40.00 ± 0.10	40.00 ± 0.10	40.00 ± 0.20	40.00 ± 0.20	40.00 ± 0.20	40.00 ± 0.20
$\mathbf{P}_{\mathbf{1}}$	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10
$\mathbf{P}_{\mathbf{2}}$	2.00 ± 0.05						
\mathbf{D}_{0}	$1.50+0.1 /-0$	$1.50+0.1 /-0$	$1.50+0.1 /-0$	$1.50+0.1 /-0$	$1.50+0.1 /-0$	$1.50+0.1 /-0$	$1.50+0.1 /-0$
$\mathbf{D}_{\mathbf{1}}$	-	-	-	1.00 ± 0.10	-	-	1.00 ± 0.10
\mathbf{E}	1.75 ± 0.10						
\mathbf{F}	3.50 ± 0.05						

「ENTERPRISE CORP.©

10. PACKAGE DIMENSION AND QUANTITY

Paper Tape :

Fig. 23 The dimension of reel

Size	$\mathbf{0 1 0 0 5}, \mathbf{0 2 0 1}, \mathbf{0 4 0 2 , 0 5 0 5 , 0 6 0 3 , 0 8 0 5 , \mathbf { 1 1 1 1 }}$	
Reel size	$7^{\prime \prime}$	$13^{\prime \prime}$
\mathbf{C}	13.0 ± 0.5	13.0 ± 0.5
\mathbf{W}_{1}	10.0 ± 1.5	10.0 ± 1.5
A	178.0 ± 2.0	330.0 ± 2.0
\mathbf{N}	$60.0+1.0 /-0$	50 min

11. APPENDIXES

Constructions :

No.	Name		X8G, NP0
(1)	Ceramic material		Hi-Q dielectric ceramic
(2)	Inner electrode		Cu
(3)	Termination	Inner layer	Cu
(4)		Middle layer	Ni
(5)		Outer layer	Sn (Matt)

■ Storage and handling conditions

(1) To store products at 5 to $40^{\circ} \mathrm{C}$ ambient temperature and 20 to 70%. related humidity conditions; MSL Level 1.
(2) The product is recommended to be used within one year after shipment. Check solderability in case of shelf life extension is needed.
Cautions:
a. The corrosive gas reacts on the terminal electrodes of capacitors, and results in the poor solderability. Do not store the capacitors in the ambience of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
b. In corrosive atmosphere, solderability might be degraded, and silver migration might occur to cause low reliability.
c. Due to the dewing by rapid humidity change, or the photochemical change of the terminal electrode by direct sunlight, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or dewing condition. To store products on the shelf and avoid exposure to moisture.

■ Recommended soldering conditions

The lead-free termination MLCCs are not only to be used on SMT against lead-free solder paste, but also suitable against lead-containing solder paste. If the optimized solder joint is requested, increasing soldering time, temperature and concentration of N_{2} within oven are recommended.

Fig. 25 Recommended reflow soldering profile for SMT process with SnAgCu series solder paste.

Fig. 26 Recommended wave soldering profile for SMT process with SnAgCu series solder.

[^0]: \# Reflow soldering only is recommended.

[^1]: 1. The letter in cell is expressed the symbol of product thickness.
[^2]: 1. The letter in cell is expressed the symbol of product thickness.
[^3]: 1. The letter in cell is expressed the symbol of product thickness.
